2,162 research outputs found

    Comprehensive characterization of molecular interactions based on nanomechanics

    Get PDF
    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions

    Characterization of the Growth of Chlamydia trachomatis in In Vitro-Generated Stratified Epithelium

    Get PDF
    This project was supported by NIH grant AI065545, NIFA grant 1010265, the University of Aberdeen's Knowledge Exchange Transfer Fund, and start-up funds from the WSU College of Veterinary Medicine to RC. AN is a recipient of the Fundação para a Ciência e Tecnologia fellowship SFRH/BD/86670/201

    Factors associated with alcohol reduction in harmful and hazardous drinkers following alcohol brief intervention in Scotland: a qualitative enquiry

    Get PDF
    Background: Alcohol Brief Intervention (ABI) uses a motivational counselling approach to support individuals to reduce excessive alcohol consumption. There is growing evidence on ABI’s use within various health care settings, although how they work and which components enhance success is largely unknown. This paper reports on the qualitative part of a mixed methods study. It explores enablers and barriers associated with alcohol reduction following an ABI. It focuses on alcohol’s place within participants’ lives and their personal perspectives on reducing consumption. There are a number of randomised controlled trials in this field though few ABI studies have addressed the experiences of hazardous/harmful drinkers. This study examines factors associated with alcohol reduction in harmful/hazardous drinkers following ABI. Methods: This qualitative study was underpinned by a realist evaluation approach and involved semistructured interviews with ten harmful or hazardous alcohol drinkers. Participants (n = 10) were from the intervention arm of a randomised controlled trial (n = 124). All had received ABI, a 20 min motivational counselling interview, six months previously, and had reduced their alcohol consumption. Interviews were recorded, transcribed verbatim and thematically analysed. Results: Participants described their views on alcohol, its’ place in their lives, their personal perspectives on reducing their consumption and future aspirations. Conclusions: The findings provide an insight into participants’ views on alcohol, ABI, and the barriers and enablers to change. Participants described a cost benefit analysis, with some conscious consideration of the advantages and disadvantages of reducing intake or abstaining from alcohol. Findings suggest that, whilst hospital admission can act as a catalyst, encouraging individuals to reflect on their alcohol consumption through ABI may consolidate this, turning this reflective moment into action. Sustainability may be enhanced by the presence of a ‘significant other’ who encourages and experiences benefit. In addition having a purpose or structure with activities linked to employment and/or social and leisure pursuits offers the potential to enhance and sustain reduced alcohol consumption. Trial registration: Trial registration number TRN NCT00982306 September 22nd 200

    Recycled gabbro signature in hotspot magmas unveiled by plume–ridge interactions

    Get PDF
    Lavas erupted within plate interiors above upwelling mantle plumes have chemical signatures that are distinct from midocean ridge lavas. When a plume interacts with a mid-ocean ridge, the compositions of both their lavas changes, but there is no consensus as to how this interaction occurs1–3. For the past 15 Myr, the Pacific–Antarctic mid-ocean ridge has been approaching the Foundation hotspot4 and erupted lavas have formed seamounts. Here we analyse the noble gas isotope and trace element signature of lava samples collected from the seamounts. We find that both intraplate and on-axis lavas have noble gas isotope signatures consistent with the contribution from a primitive plume source. In contrast, nearaxis lavas show no primitive noble gas isotope signatures, but are enriched in strontium and lead, indicative of subducted former oceanic lower crust melting within the plume source5–7. We propose that, in a near-ridge setting, primitive, plumesourced magmas formed deep in the plume are preferentially channelled to and erupted at the ridge-axis. The remaining residue continues to rise and melt, forming the near-axis seamounts. With the deep melts removed, the geochemical signature of subduction contained within the residue becomes apparent. Lavas with strontium and lead enrichments are found worldwide where plumes meet mid-ocean ridges6–8, suggesting that subducted lower crust is an important but previously unrecognised plume component

    Prevalence of coronary artery disease risk factors in Iran: a population based survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coronary artery disease (CAD) is a leading cause of mortality, morbidity, and disability with high health care cost in Iran. It accounts for nearly 50 percent of all deaths per year. Yet little is known about CAD and CAD risk factors in the Iranian population. We aimed to assess the prevalence of different CAD risk factors in an Iranian population.</p> <p>Methods</p> <p>A descriptive cross sectional survey was conducted involving 3000 healthy adults at 18 years of age or above who were recruited with cluster random sampling. Demographic data and risk factors were determined by taking history, physical examination and laboratory tests.</p> <p>Results</p> <p>The average age was 36.23 ± 15.26. There was 1381 female (46%) and 1619 male (54%) out of which 6.3% were diabetic, 21.6% were smoker, and 15% had positive familial heart disease history. 61% had total cholesterol level > 200 mg/dL, 32% triglyceride > 200 mg/dl, 47.5% LDL-c > 130 mg/dl, 5.4% HDL-c < 35 mg/dl, 13.7% systolic blood pressure > 140 mmHg, 9.1% diastolic blood pressure > 90 mmHg and 87% of them were physically inactive.</p> <p>Conclusion</p> <p>Clinical and Para-clinical data indicated that Iranian adult population are of a high level of CAD risk factors, which may require urgent decision making to address national control measures regarding CAD.</p

    The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae

    Get PDF
    Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    Get PDF
    Positive plant diversity-productivity relationships have been reported for experimental semi-natural grasslands (Cardinale et al. 2006; Hector et al. 1999; Tilman et al. 1996) as well as temporary agricultural grasslands (Frankow-Lindberg et al. 2009; Kirwan et al. 2007; Nyfeler et al. 2009; Picasso et al. 2008). Generally, these relationships are explained, on the one hand, by niche differentiation and facilitation (Hector et al. 2002; Tilman et al. 2002) and, on the other hand, by greater probability of including a highly productive plant species in high diversity plots (Huston 1997). Both explanations accept that diversity is significant because species differ in characteristics, such as root architecture, nutrient acquisition and water use efficiency, to name a few, resulting in composition and diversity being important for improved productivity and resource use (Naeem et al. 1994; Tilman et al. 2002). Plant diversity is generally low in temporary agricultural grasslands grown for ruminant fodder production. Grass in pure stands is common, but requires high nitrogen (N) inputs. In terms of N input, two-species grass-legume mixtures are more sustainable than grass in pure stands and consequently dominate low N input grasslands (Crews and Peoples 2004; Nyfeler et al. 2009; Nyfeler et al. 2011). In temperate grasslands, N is often the limiting factor for productivity (Whitehead 1995). Plant available soil N is generally concentrated in the upper soil layers, but may leach to deeper layers, especially in grasslands that include legumes (Scherer-Lorenzen et al. 2003) and under conditions with surplus precipitation (Thorup-Kristensen 2006). To improve soil N use efficiency in temporary grasslands, we propose the addition of deep-rooting plant species to a mixture of perennial ryegrass and white clover, which are the most widespread forage plant species in temporary grasslands in a temperate climate (Moore 2003). Perennial ryegrass and white clover possess relatively shallow root systems (Kutschera and Lichtenegger 1982; Kutschera and Lichtenegger 1992) with effective rooting depths of <0.7 m on a silt loamy site (Pollock and Mead 2008). Grassland species, such as lucerne and chicory, grow their tap-roots into deep soil layers and exploit soil nutrients and water in soil layers that the commonly grown shallow-rooting grassland species cannot reach (Braun et al. 2010; Skinner 2008). Chicory grown as a catch crop after barley reduced the inorganic soil N down to 2.5 m depth during the growing season, while perennial ryegrass affected the inorganic soil N only down to 1 m depth (Thorup-Kristensen 2006). Further, on a Wakanui silt loam in New Zealand chicory extracted water down to 1.9 m and lucerne down to 2.3 m soil depth, which resulted in greater herbage yields compared with a perennial ryegrass-white clover mixture, especially for dryland plots (Brown et al. 2005). There is little information on both the ability of deep- and shallow-rooting grassland species to access soil N from different vertical soil layers and the relation of soil N-access and herbage yield in temporary agricultural grasslands. Therefore, the objective of the present work was to test the hypotheses 1) that a mixture comprising both shallow- and deep-rooting plant species has greater herbage yields than a shallow-rooting binary mixture and pure stands, 2) that deep-rooting plant species (chicory and lucerne) are superior in accessing soil N from 1.2 m soil depth compared with shallow-rooting plant species, 3) that shallow-rooting plant species (perennial ryegrass and white clover) are superior in accessing soil N from 0.4 m soil depth compared with deep-rooting plant species, 4) that a mixture of deep- and shallow-rooting plant species has greater access to soil N from three soil layers compared with a shallow-rooting two-species mixture and that 5) the leguminous grassland plants, lucerne and white clover, have a strong impact on grassland N acquisition, because of their ability to derive N from the soil and the atmosphere
    corecore